Cycling
Crash Severity Analysis of Child Bicyclists using Arm-Net and MambaNet
Somvanshi, Shriyank, Chakraborty, Rohit, Das, Subasish, Dutta, Anandi K
Child bicyclists (14 years and younger) are among the most vulnerable road users, often experiencing severe injuries or fatalities in crashes. This study analyzed 2,394 child bicyclist crashes in Texas from 2017 to 2022 using two deep tabular learning models (ARM-Net and MambaNet). To address the issue of data imbalance, the SMOTEENN technique was applied, resulting in balanced datasets that facilitated accurate crash severity predictions across three categories: Fatal/Severe (KA), Moderate/Minor (BC), and No Injury (O). The findings revealed that MambaNet outperformed ARM-Net, achieving higher precision, recall, F1-scores, and accuracy, particularly in the KA and O categories. Both models highlighted challenges in distinguishing BC crashes due to overlapping characteristics. These insights underscored the value of advanced tabular deep learning methods and balanced datasets in understanding crash severity. While limitations such as reliance on categorical data exist, future research could explore continuous variables and real-time behavioral data to enhance predictive modeling and crash mitigation strategies.
GaussMark: A Practical Approach for Structural Watermarking of Language Models
Block, Adam, Sekhari, Ayush, Rakhlin, Alexander
Recent advances in Large Language Models (LLMs) have led to significant improvements in natural language processing tasks, but their ability to generate human-quality text raises significant ethical and operational concerns in settings where it is important to recognize whether or not a given text was generated by a human. Thus, recent work has focused on developing techniques for watermarking LLM-generated text, i.e., introducing an almost imperceptible signal that allows a provider equipped with a secret key to determine if given text was generated by their model. Current watermarking techniques are often not practical due to concerns with generation latency, detection time, degradation in text quality, or robustness. Many of these drawbacks come from the focus on token-level watermarking, which ignores the inherent structure of text. In this work, we introduce a new scheme, GaussMark, that is simple and efficient to implement, has formal statistical guarantees on its efficacy, comes at no cost in generation latency, and embeds the watermark into the weights of the model itself, providing a structural watermark. Our approach is based on Gaussian independence testing and is motivated by recent empirical observations that minor additive corruptions to LLM weights can result in models of identical (or even improved) quality. We show that by adding a small amount of Gaussian noise to the weights of a given LLM, we can watermark the model in a way that is statistically detectable by a provider who retains the secret key. We provide formal statistical bounds on the validity and power of our procedure. Through an extensive suite of experiments, we demonstrate that GaussMark is reliable, efficient, and relatively robust to corruptions such as insertions, deletions, substitutions, and roundtrip translations and can be instantiated with essentially no loss in model quality.
Geospatial Road Cycling Race Results Data Set
Janssens, Bram, Pappalardo, Luca, De Bock, Jelle, Bogaert, Matthias, Verstockt, Steven
The field of cycling analytics has only recently started to develop due to limited access to open data sources. Accordingly, research and data sources are very divergent, with large differences in information used across studies. To improve this, and facilitate further research in the field, we propose the publication of a data set which links thousands of professional race results from the period 2017-2023 to detailed geographic information about the courses, an essential aspect in road cycling analytics. Initial use cases are proposed, showcasing the usefulness in linking these two data sources.
Fuelling the Tour de France: Secrets of the team kitchens
Not so long ago, the professional cycling world's approach to fuelling was remarkably basic. Options for riders barely extended beyond a monotonous menu of pasta, rice or whatever fare that night's hotel kitchen decided to serve up. These days, it is an entirely different prospect, with vast sums spent on custom-built food trucks, personalised nutrition apps and meticulously-planned meal regimes all in the name of performance enhancement. For the nutritionists and chefs tasked with providing sustenance to power their team's riders over 2,170 miles in the coming weeks there are principally two dilemmas: what food to prepare and how to do so in an ever-changing environment. The answers are gleaned from a year-round process that begins in December during pre-season training.
Compositional Text-to-Image Generation with Dense Blob Representations
Nie, Weili, Liu, Sifei, Mardani, Morteza, Liu, Chao, Eckart, Benjamin, Vahdat, Arash
Existing text-to-image models struggle to follow complex text prompts, raising the need for extra grounding inputs for better controllability. In this work, we propose to decompose a scene into visual primitives - denoted as dense blob representations - that contain fine-grained details of the scene while being modular, human-interpretable, and easy-to-construct. Based on blob representations, we develop a blob-grounded text-to-image diffusion model, termed BlobGEN, for compositional generation. Particularly, we introduce a new masked cross-attention module to disentangle the fusion between blob representations and visual features. To leverage the compositionality of large language models (LLMs), we introduce a new in-context learning approach to generate blob representations from text prompts. Our extensive experiments show that BlobGEN achieves superior zero-shot generation quality and better layout-guided controllability on MS-COCO. When augmented by LLMs, our method exhibits superior numerical and spatial correctness on compositional image generation benchmarks.
Beyond Statistical Similarity: Rethinking Metrics for Deep Generative Models in Engineering Design
Regenwetter, Lyle, Srivastava, Akash, Gutfreund, Dan, Ahmed, Faez
Deep generative models such as Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), Diffusion Models, and Transformers, have shown great promise in a variety of applications, including image and speech synthesis, natural language processing, and drug discovery. However, when applied to engineering design problems, evaluating the performance of these models can be challenging, as traditional statistical metrics based on likelihood may not fully capture the requirements of engineering applications. This paper doubles as a review and practical guide to evaluation metrics for deep generative models (DGMs) in engineering design. We first summarize the well-accepted `classic' evaluation metrics for deep generative models grounded in machine learning theory. Using case studies, we then highlight why these metrics seldom translate well to design problems but see frequent use due to the lack of established alternatives. Next, we curate a set of design-specific metrics which have been proposed across different research communities and can be used for evaluating deep generative models. These metrics focus on unique requirements in design and engineering, such as constraint satisfaction, functional performance, novelty, and conditioning. Throughout our discussion, we apply the metrics to models trained on simple-to-visualize 2-dimensional example problems. Finally, we evaluate four deep generative models on a bicycle frame design problem and structural topology generation problem. In particular, we showcase the use of proposed metrics to quantify performance target achievement, design novelty, and geometric constraints. We publicly release the code for the datasets, models, and metrics used throughout the paper at https://decode.mit.edu/projects/metrics/.
Conformal Regression in Calorie Prediction for Team Jumbo-Visma
van Kuijk, Kristian, Dirksen, Mark, Seiler, Christof
UCI WorldTour races, the premier men's elite road cycling tour, are grueling events that put physical fitness and endurance of riders to the test. The coaches of Team Jumbo-Visma have long been responsible for predicting the energy needs of each rider of the Dutch team for every race on the calendar. Those must be estimated to ensure riders have the energy and resources necessary to maintain a high level of performance throughout a race. This task, however, is both time-consuming and challenging, as it requires precise estimates of race speed and power output. Traditionally, the approach to predicting energy needs has relied on judgement and experience of coaches, but this method has its limitations and often leads to inaccurate predictions. In this paper, we propose a new, more effective approach to predicting energy needs for cycling races. By predicting the speed and power with regression models, we provide the coaches with calorie needs estimates for each individual rider per stage instantly. In addition, we compare methods to quantify uncertainty using conformal prediction. The empirical analysis of the jackknife+, jackknife-minmax, jackknife-minmax-after-bootstrap, CV+, CV-minmax, conformalized quantile regression, and inductive conformal prediction methods in conformal prediction reveals that all methods achieve valid prediction intervals. All but minmax-based methods also produce sufficiently narrow prediction intervals for decision-making. Furthermore, methods computing prediction intervals of fixed size produce tighter intervals for low significance values. Among the methods computing intervals of varying length across the input space, inductive conformal prediction computes narrower prediction intervals at larger significance level.
Tour de France adds ChatGPT and digital twin tech. Here's how and why
The Tour de France is one the most prestigious bicycle races in the world, attracting millions of viewers every year. This year the viewing experience is getting a massive upgrade by leveraging the latest tech including IoT, edge computing, and generative AI. NTT, the IT and services company, has been the Tour de France's partner for the last nine years. This year it is raising the bar by creating "the world's largest connected stadium" and incorporating ChatGPT. Also: Data and digital twins are changing golf.
Counterfactuals for Design: A Model-Agnostic Method For Design Recommendations
Regenwetter, Lyle, Obaideh, Yazan Abu, Ahmed, Faez
We introduce Multi-Objective Counterfactuals for Design (MCD), a novel method for counterfactual optimization in design problems. Counterfactuals are hypothetical situations that can lead to a different decision or choice. In this paper, the authors frame the counterfactual search problem as a design recommendation tool that can help identify modifications to a design, leading to better functional performance. MCD improves upon existing counterfactual search methods by supporting multi-objective queries, which are crucial in design problems, and by decoupling the counterfactual search and sampling processes, thus enhancing efficiency and facilitating objective tradeoff visualization. The paper demonstrates MCD's core functionality using a two-dimensional test case, followed by three case studies of bicycle design that showcase MCD's effectiveness in real-world design problems. In the first case study, MCD excels at recommending modifications to query designs that can significantly enhance functional performance, such as weight savings and improvements to the structural safety factor. The second case study demonstrates that MCD can work with a pre-trained language model to suggest design changes based on a subjective text prompt effectively. Lastly, the authors task MCD with increasing a query design's similarity to a target image and text prompt while simultaneously reducing weight and improving structural performance, demonstrating MCD's performance on a complex multimodal query. Overall, MCD has the potential to provide valuable recommendations for practitioners and design automation researchers looking for answers to their ``What if'' questions by exploring hypothetical design modifications and their impact on multiple design objectives. The code, test problems, and datasets used in the paper are available to the public at decode.mit.edu/projects/counterfactuals/.
Bike2Vec: Vector Embedding Representations of Road Cycling Riders and Races
Baron, Ethan, Janssens, Bram, Bogaert, Matthias
Vector embeddings have been successfully applied in several domains to obtain effective representations of non-numeric data which can then be used in various downstream tasks. We present a novel application of vector embeddings in professional road cycling by demonstrating a method to learn representations for riders and races based on historical results. We use unsupervised learning techniques to validate that the resultant embeddings capture interesting features of riders and races. These embeddings could be used for downstream prediction tasks such as early talent identification and race outcome prediction.